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RESONANCE FLOW RANDOMIZATION IN THE K-REGIME OF BOUNDARY-LAYER TRANSITION 
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UDC 532.536 

Introduction. The empirical data presently available indicates the existence of two 
main regimes for the nonlinear disintegration of laminar flow in a boundary layer during the 
origination of turbulence. A survey of studies devoted to discovering and investigating 
these regimes and analyzing the reasons for their differences can be found in [i, 2]. The 
first regime is characterized by pulsations of characteristic bumps on the oscillograms at 
a certain stage of development of the instability wave. These bumps are generally regarded 
as corresponding to the beginning of the development of turbulence spots. This regime was 
first observed more than 30 yrs ago in experiments conducted at the National Bureau of Stan- 
dards (USA) and was described in detail in [3]. In recognition of one of the authors of 
this study (Klebanov) and the fact that this regime has made an important contribution to 
the study of the transition to turbulence, it has been given the name "K-regime." 

In 1976 investigators discovered a new, essentially different transition regime not 
characterized by the above-mentioned bumps or any of the other features associated with the 
K-regime [4]. The transition to turbulence in this regime occurred through a fairly smooth 
increase in the higher harmonics of the main instability wave, the appearance of a broad 
packet of low-frequency pulsations in the spectrum (including the subharmonic of the main 
wave), and their subsequent interaction and filling of the entire spectrum [4] (also see 
[51). 

The existence of two main transition regimes was confirmed by visualization of the per- 
turbation field in a boundary layer in [6, 7]. It was shown in [8] that one regime is re- 
placed by the other. Soon afterward [9, i0], it was explained that the main mechanism re- 
sponsible for the development of a three-dimensional flow and randomization of the flow in 
the new transition regime is subharmonic parametric resonance of the plane main wave (of 
frequency ml) and three-dimensional stochastic background pulsations of the broad continuous 
spectrum within the region of the frequency of the subharmonic ml/2 = mi/2. A mathematical 
model of this interaction in a triplet (low-mode) approximation was first proposed in [ii, 
12]. A weakly linear theory of the formation of the new regime which quantitatively de- 
scribes experimental observations was constructed in [13, 14]. Due to the determining role 
of subharmonic parametric resonances in the new type of transition, this type of disintegra- 
tion of laminar flow is usually referred to in the literature as the "subharmonic" regime. 

However, in accordance with the resonance-wave concept of disintegration proposed in 
[i, 2] and confirmed directly in [15], parametric resonances of the subharmonic type also 
play the main role in the formation of the K-regime bumps. However, in this case we are 
dealing not with a single resonance, but with a system of resonances which intensifies de- 
terministic initiating waves that are coherent with the main wave. In light of this, the 
term "subharmonic" can be used with the same (or even greater) degree of justification in 
regard to the K-regime of transition. Its use to denote a new regime is very unfortunate. 
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Taking into account that the given new regime was first empirically detected in [4] and ana- 
lyzed in detail in [9, i0, 13, 14] in Novosibirsk, the author of [2] proposed referring to 
it by the abbreviated name of the "N-regime" of disintegration. We will use this terminology 
below. Although it has been more than 30 yrs since the K-regime was discovered in [3], its 
nature (in contrast to that of the N-regime) has for the most part remained misunderstood 
until recently. 

Experiments in [16, 17], involving detailed study of the initial stages of the K-regime 
(up to the formation of the characteristic bumps and their doubling and tripling), led to a 
reexamination of representations on certain governing disintegration mechanisms and yielded 
the first systematic information on the spectral (frequency and frequency-wave) structure of 
the perturbation field. Proceeding on the basis of an analysis of these and other results 
of studies, the authors of [i, 2] then proposed and indirectly substantiated the "resonance- 
wave concept" of the K-regime of boundary-layer disintegration. This theory explains (at 
least qualitatively) nearly all of the main features of the behavior of the perturbation 
field that are seen in experiments. 

The most popular explanation for the bumps at the beginning of boundary-layer turbulence 
for the last 30 yrs has been local high-frequency secondary (LHS) flow instability leading 
to intensive reinforcement of high-frequency background disturbances due to the appearance 
of highly unstable, multibranched inflected velocity profiles in finite space and time re- 
gions. A large number of theoretical studies and one experimental study [18] (see [19, 20] 
for surveys) has been devoted to the study of the concept of LHS instability. However, the 
limited number of sufficiently thorough experimental studies that had been conducted made it 
impossible to define the role of LHS instability in the transition to turbulence. A final 
answer to this question was obtained in [19]. First of all, it was shown that - in contrast 
to the opinion most widely held - intensification of the characteristic bumps on the velocity 
oscillograms (which play the main role in the K-regime) does not occur under the influence 
of LHS instability, since none of the criteria for the realization of this type of instabil- 
ity are met. Secondly, intensification of considerably weaker high-frequency wave packets 
was seen in the flow. According to all of the criteria used, these packets corresponded to 
waves intensified by the mechanism of LHS instability. However, they did not have a signifi- 
cant effect on the breakdown of laminar flow. 

The violent resonance intensification of stochastic flow oscillations seen in the N- 
regime of transition [9, i0] first suggested the possibility that very weak background dis- 
turbances could have a strong (resonant) effect on the transition. From the viewpoint of 
the resonance-wave (RW) concept of boundary-layer transition to the more complex K-regime 
of breakdown, first proposed in [i, 2], the main role is played by cascades (systems) of 
resonances which are harmonic and subharmonic (parametric) and occur between different wave 
trains in the frequency-wave spectrum. The existence of these systems of resonances for 
simple cases (two, three, and four modes) had previously been theoretically predicted in 
[ii, 12, 21, 22] and experimentally substantiated for the case of subharmonic resonance [9, 
i0]. However, only in [i, 2] were these low-mode models generalized to a cascade of reso- 
nances (presumed to exist in the K-regime at the stage corresponding to the appearance of 
the bumps) within the framework of the RW concept and substantiated indirectly. Due to sev- 
eral experimental obstacles, attempts made in [16, 17] to observe this system of resonances 
directly were unsuccessful. Success was achieved later in additional special experiments 
published in [15]. It was shown that the system of harmonic and subharmonic resonance inter- 
actions postulated in [i, 2] actually exists. This result has in turn almost completely an- 
swered the question of the governing mechanisms in the initial stages of K-breakdown - to 
the point of the formation of the characteristic bumps on the pulsation oscillograms. 

The main problems that remain in regard to understanding the K-regime of boundary-layer 
breakdown have to do with the subsequent (mainly after the appearance of the bumps) stages 
of the transition, which are characterized by the beginning of randomization of the flow. 
As was noted in [i, 2], due to the discovery of the deterministic nature of the bumps in 
[16, 17] and the still-unclear role of the mechanism of LHS instability in the intensifica- 
tion of random background disturbances, the question of the paths of flow randomization in 
the K-regime of boundary-layer transition remains unanswered. 

The present study is devoted to examination of the mechanisms responsible for the ap- 
pearance or intensification (from the background) of stochastic perturbations and explana- 
tion of the role of resonance interactions in the final stages of the K-regime of breakdown. 
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Experimental Method. Experiments were conducted in a low-turbulence subsonic wind tun- 
nel of the T-324 type at the ITPM (Institute of Theoretical and Applied Mechanics) of the 
Siberian Department of the Soviet Academy of Sciences. The flow velocity in the experiment 
U= = 9.18 m/sec. The conditions and methods used in the experiments (except for the method 
used to analyze the signals) were the same as in [i0], where they were described in detail 
(the results reported below were obtained directly from an analysis of signals recorded on 
a magnetograph in 1980 and partially analyzed in [16, 17]). 

Harmonic oscillations were excited in a laminar boundary layer on a flat plate by means 
of a vibrating ribbon located 250 mm downstream of the leading edge of the plate. A slight 
spatial modulation of the flow with respect to the transverse coordinate z was produced by 
12.5 x 12.5 mm blocks stuck directly onto the plate under the ribbon. The spacing of the 
blocks %z = 25 mm. The initial stages of the K-regime excited by these perturbations were 
described in detail in [16, 17]. With the chosen amplitude and frequency (fl = 96.4 Hz) for 
the instability wave excited in the boundary layer, the bumps characteristic of the K-regime 
were formed on the pulsation oscillograms at the positions of the "peaks" along z (z = 2~z/ 
Iz = 0 • 2k~, k = 0, I, 2 .... ), where x ~ 440-450 mm (x is the longitudinal coordinate reck- 
oned from the leading edge of the plate). 

The measurements were made using equipment based on a hot-wire anemometer with a linear- 
izer [16]. The data recorded on the magnetograph was entered into the computer synchronously 
with the control signal recorded on the second channel of the magnetograph and corresponding 
to the signal fed to the vibrating ribbon - the source of the disturbances. They were ana- 
lyzed on the basis of an application package which was partially described in [23]. The next 
section of this article describes certain stages of the analysis in greater detail. 

Results of Measurements. Figure la shows the evolution of the oscillograms of the down- 
stream pulsations measured at the peak of the distribution with respect to z (z = 0) at a 
distance from the wall y = 1.0 mm. Ten synchronous realizations of pulsating flow are shown 
superimposed on one another for each coordinate x. The length of each realization was T for 
one period of the main wave. Since the disturbances are traveling waves, their phase changes 
(increases) with a shift downstream. This is clear from Fig. la. Figure ib shows four 
groups of oscillograms corresponding to Fig. la for x = 400, 490, 510, and 550 ~m but ob- 
tained after subtraction of the deterministic (periodic) component of the pulsations (which 
was determined by previous synchronous averaging). 

The evolution of the corresponding amplitude spectra of the pulsations (width of the 
transmission band 4 Hz) is shown in Fig. lc for the coordinates x = 400, 420, 450, 490, 530, 
and 570 mm (spectra 1-6, respectively). Each subsequent spectrum is shifted relative to the 
previous spectrum by +i0 dB to facilitate representation of the results. Figure id shows 
curves depicting the increase in the amplitudes of the higher harmonics of the main wave 
mn = nml (n = i, 2 ..... 7), detected in the spectra in Fig. ic. 

In the first sections (x = 400-450 mm), the oscillograms (Fig. la) correspond to a near- 
ly periodic flow formed at the stage of deterministic development of space waves formed under 
the influence of the system of harmonic and parametric resonances described in [i, 2] from 
the viewpoint of the RW concept. Their spectra (Fig. ic) consists almost exclusively of 
higher harmonics of the main wave; the amplitude of the pulsations of the continuous spectrum 
in the intervals between the harmonics is roughly two orders less than the amplitude of the 
deterministic components. At x ~ 440-450 mm, the projections characteristic of the K-regime 
are formed near the external boundary of the boundary layer (y = 4.5 mm). The spatial struc- 
ture of the perturbations in this region was examined in detail in [16, 17, 19]. 

The periodic flow begins to break up farther downstream. Rapid intensification of the 
oscillations of the continuous spectrum are seen on the section between x = 450 and 530 mm 
in the pulsation spectrum (Fig. ic). It is quite evident from the oscillograms in Fig. la 
that these oscillations have the form of the quasistochastic "wave packet" seen in the sta- 
tistical sense when oscillograms are superimposed. This packet is most clearly visible for 
the oscillograms in Fig. ib, where the periodic component of the process was filtered out. 
Although the pulsations inside the packet are unordered in character (particularly near the 
end of the investigated intensification region, i.e., at x ~ 530 mm), the packet itself has 
a fairly definite shape (envelope) and is located at a certain point in the period of the 
main wave. An increase in the x coordinate is initially accompanied by an increase in the 
packet's amplitude. The packet then begins to lose its distinctness and occupy an increas- 
ingly large part of the period of the main wave. Finally, at x = 550 mm, the packet nearly 
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ceases to exist and the oscillations lose almost all signs of periodicity. It is evident 
from Fig. id that the amplitudes of the harmonics generally increase up to x ~ 520 mm and 
then begin to decrease. This decrease after attainment of a maximum is usually associated 
with the concluding stages of the transition to turbulence. The stage of intensification 
of the harmonics on the section x ~ 470-530 mm corresponds to the formation of the semiran- 
dom wave packets, while the subsequent decay of the amplitudes corresponds to the breakup of 

the packets. 

It should be noted that the packets are only a modulation of the intensity of the ir- 
regular pulsations undergoing reinforcement (Fig. ib) and are not turbulence spots. One of 
the most obvious differences is the fact that the pulsations in the packets (in contrast to 
turbulence spots) do not contain high frequencies. They appear as an irregular departure 
of the oscillogram from its periodic trajectory on a certain section of the period of the 
main wave. The packet resembles a difficult section of an otherwise good road on which each 
driver tries to find the best path, the path on the rest of the road being well-traveled. 
For greater clarity, one of the series of osciliograms in Fig. la (at x = 510 mm) is shown 
separately. It is quite impossible to distinguish the packet by looking only at this oscil- 
logram, although a turbulence spot is readily apparent on a single oscillogram. 

242 



a 

o 

t4,90 

.I1!i!I 

"27 I 5 '0 ,. 5 2 a  . . ,," ~',ro 

c 
Asl2 ;, ~;'12 + ~, 

f+~, O 2 ,3"- 6' ,/ ~ ~ j  
2 4 / ~ % \  

460 SO0 S'20 

I = ii 

, ~I- PI/= 

- - 4 0 0  

--200 

0 

~ n n  

Fig. 2 

Careful analysis of the oscillograms showed that none of the set of investigated points 
in the alternation space was observed, i.e., with regular initial conditions (with a harmonic 
Tollmien-Schlichting main wave causing all of the transients), as in the N-regime [3, 4, 9, 
i0] turbulence spots are not seen in the K-regime. 

The subsequent analysis of the experimental data will be devoted to study of the mecha- 
nism responsible for the appearance of the above-noted semirandom wave packets, leading to 
breakdown of the periodic regime with the bumps characteristic of the K-regime boundary- 
layer transition. 

The amplitude spectra shown in Fig. ic do not provide any information on the phase pro- 
perties of the spectral components or the evolution of the amplitudes and phases of the har- 
monics in a slow time scale. Such information allowed the authors of [9, i0] to elucidas 
the nature of N-regime of breakdown and to discover the existence of subharmonic resonances. 
It was predicted in [24] that, as in the N-regime, randomization of the K-regime begins with 
parametric resonance intensification of random background initiating perturbations. How- 
ever, in the present case, this occurs not only in the region of the frequency of the sub- 
harmonic mi/2, but also in the region of the frequenciesnw1/2 (n= i, 2, 3...). The intensi- 
fication takes place under the influence of a train of deterministic waves with the frequen- 
cies nm I formed in the K-regime at earlier stages of development [16, 17]. The qualitative 
scheme proposed in [2, Sec. 3.1] for the formation of quasirandom wave packets from phase- 
coupled wave trains also supports the proposition that the packets shown in Fig. i, a and b, 
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are of resonant character. In other words, it is suggested that the wave packets shown in 
Fig. i, a and b, are due to parametric resonance intensification of groups of semirandom 
subharmonic waves. The program of analysis realized below was conceived to examine the val- 
idity of this proposition. 

Figure 2a shows families of pulsation oscillograms in the region of the subharmonic 
frequency. The oscillograms were isolated for 28 successive moments of slow time from a 
long realization (lasting about i0 sec). The oscillograms were obtained using a program 
for complex Fourier analysis in two time scales (which gives the evolution of the amplitudes 
and phases of the harmonics and subharmonics over slow time), with subsequent inverse Fourier 
transformation for a unique chosen harmonic in the spectrum (in the given case, for the sub- 
harmonic). The procedures followed for the two-scale Fourier analysis were: i) subdivision 
of a long oscillogram into segments, with the beginning of the segments being time-shifted 
by intervals which were multiples of the period of the subharmonic and the segments having 
lengths which were two periods of the subharmonic; 2) weighting of each segment with a 
Kaiser-Bessel window; 3) fast Fourier transformation of each weighted segment with the dis- 
card of "superfluous" spectral harmonics differing from nwl/2 and not bearing phase infor- 
mation; 4) normalization of the resulting amplitudes to allow for coherent intensification 
of the window and correction of the phases of the harmonics for the cases when the quantiza- 
tion time is not a multiple of the slow time step. The characteristics of Kaiser-Bessel 
windows were discussed in [25]. In the present case, we used the window parameter equ = 2.0. 
Its equivalent-noise bandwidth was 1.5 bits. Under the conditions of the experiment con- 
ducted here, I bit corresponded to about 24.1 Hz. The effective passband in the Fourier 
analysis was thus about 36 Hz. 

The graphs in Fig. 2a show that subharmonic pulsations are intensively reinforced in 
the region where the quasirandom wave packet appears (x = 470-520 mm) (also see Fig. 2c) 
and take on the characteristic form, with nodes and antinodes. This form of oscillogram 
corresponds to subharmonic disturbances with an amplitude which fluctuates according to a 
random law. The phase is nearly constant, although it changes suddenly by ~ at random mo- 
ments of time when the amplitudes pass through zero. The points of the phase trajectory of 
the subharmonic pulsations corresponding to these oscillograms in the complex plane are 
shown in Fig. 2b. It is evident that the cloud comprised of these points - which initially 
corresponded to random oscillations - is stretched out into an ellipse with a semiaxis ratio 
which increases in value. The ellipse ultimately becomes almost a straight line whose slope 
gives the fixed value of the phase. 

Such behavior by the subharmonic pulsations was observed earlier in [9, i0] (compare 
Fig. 2a and b in the present study with Fig. 5, 15-17 in [I0]). However, as was shown in 
[9, i0], this behavior corresponds to intensification of random subharmonic background dis- 
turbances under the influence of parametric resonance with a main wave of the frequency ml. 

Although some ordering of the pulsations occurs during the resonance intensification, 
they retain features of randomness. On the one hand, their "instantaneous" frequency is 
fixed and is equal to the frequency of the subharmonic mi/2 = ~I/2, while their phase takes 
only two values: ~r and ~r + ~, where ~r is the resonance value of the phase determined by 
the difference between the phases of the subharmonic and the main wave in accordance with 
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the condition of resonance phase synchronism (see [9, i0]). On the other hand, the random 
behavior of the amplitude and the random moments of time at which the phase jumps take place 
have a stochastic element which is "inherited" from the initial background disturbances. As 
a result, when the Fourier analysis is performed for long periods of time, these oscilla- 
tions correspond to a broad section of the continuous spectrum in the region of the subhar- 
monic frequency. The ability of subharmonic resonance to amplify disturbances within a broad 
range of the continuous spectrum was described, studied, and explained on the basis of quasi- 
steady principles in [9, 10] and is consistent with the extremely large spectral width of 
the resonance. 

Figure 2c demonstrates the connection between the amplitude Az/2 of the semirandom sub- 
harmonic undergoing amplification and the degree of elongation of the cloud of points of its 
phase trajectory ez/= = a/b (a and b are the dimensions of the cloud along its principal 
axes). Also shown is the connection between the amplitude of the subharmonic and the dif- 
ference between its phase and the phase of the main wave (El/z, Az/2, ~1--~zl~ correspond 
to graphs 1-3). It is apparent that the highest amplification rates correspond to the lar- 
gest cloud elongationsdue to resonance. Phase synchronism of the subharmonic and the main 
wave is also seen in the resonance region. It should be noted that signs of resonance disap- 
pear in the region x ~ 520-530 mm, and there is a simultaneous stop to further increases in 
the amplitude of the subharmonic (the same is true of the packet integrated over the spec- 
trum). 

245 



Thus, it has been found that flow randomization in the K-regime begins (analogously to 
the N-regime) with the parametric resonance intensification of a broad continuous spectrum 
of subharmonic pulsations in the region of the frequency ml/2. However, as noted above, 
since the spectrum contains a broad series of high-amplitude higher harmonics of the main 
wave, all of the necessary conditions are created in the K-regime for the appearance of not 
one but a whole system of parametric resonances. An analysis shows that such a system ac- 
tually exists. 

Figure 3 shows oscillograms and points of phase trajectories of pulsations in the fre- 
quency region mT/2 = 7mi/2. These oscillograms are analogous to those shown in Fig. 2. It 
is apparent that, as in the case of the subharmonics, resonance intensification of semirandom 
perturbations again takes place. This is manifest in a characteristic extension of the phase 
trajectories into an ellipse and the formation of the corresponding nodes and antinodes on 
the oscillograms at the moments of rapid increase in the amplitudes of the perturbations and 
the appearance of quasirandom "wave packets" on the integral oscillograms of the pulsations. 
Similar resonance phenomena were recorded in the region of other subharmonics with frequen- 
cies around (2k + i)mI/2 (k = 0, i, 2, ..., 6). However, it is evident that the oscillations 
which force the waves at the frequencies nm~ should have odd numbers n = 2k + i. Even har- 
monics with the frequencies 2mml (m = i, 2, 3...) may also cause resonance intensification 
of stochastic pulsations on sections of the continuous spectrum around the frequencies 2mml/ 
2 = m~ l (m = I, 2, 3...), as was seen here. 

Figure 4a shows oscillograms and points of phase trajectories for the early stages of 
development of the perturbations in the region of the frequency m 2 = 2w I. The main differ- 
ence between these disturbances and those shown in Figs. 2 and 3 is that the characteristic 
nonperiodic background disturbances that are intensified by parametric resonance and lead to 
the characteristic nodes and antinodes on the oscillograms are superimposed on a periodic de- 
terministic wave of the frequency ~2. The cloud of points of the phase trajectory is again 
extended almost into straight lines. In the given case, these lines are shifted far from the 
origin and are "seated" on the end of the vector corresponding to the deterministic wave of 
frequency m2, the amplitude and phase of this wave being nearly constant over time. Distur- 
bances having similar properties are seen in the region of other frequencies of the type mml; 
examples for m3 and m4 are shown in Fig. 4c and d. 

To eliminate the "shielding" effect of high-amplitude periodic components of the pulsa- 
tions when studying irregular oscillations in the region of the frequencies mm I (m = i, 2, 
3...), we separated the noncoherent part of the perturbations from the coherent part with 
the main wave by synchronous subtraction of the periodic component (obtained by sunnning a 
large number of realizations) from the integral signal. Figure Ib gives examples of oscil- 
lograms of such irregular components, while Fig. 5 shows typical narrow-band oscillograms 
and the corresponding phase-trajectory points for oscillations in the region of the frequen- 
cies ml, m2, m~, m4, us, and m 7 at x = 450 (a) and 470-480 mm (b). 

Comparison of the graphs for m 2 at x = 450 and 480 mm in Fig. 5 and Fig. 4a and d, 
clearly demonstrates the effect of eliminating the periodic component. The narrow-band os- 
cillograms lose their sinusoidal component and become similar to those seen for oscillations 
in the region of the frequencies (2k + i)mi/2 (see Figs. 2 and 3). The cloud of phase-tra- 
jectory points is shifted in this case, with its center lying at the origin. 

It should be noted that, in principle, the observed intensification of the stochastic 
addition to deterministic perturbations for the special case of perturbations around the 
frequency ~i (Fig. 5a) corresponds to the phenomenon of modulation instability familiar from 
the theory of vibration [26], i.e., it corresponds to parametric resonance between the har- 
monic 2m I and weak disturbances around the frequency ml, leading to slow modulation of its 
amplitude and phase. However, the number of waves that actually participates in the inter- 
action in the K-regime is of course considerably greater. 

The phase-trajectory points in Fig. 4a demonstrate the constancy of the phase shift 
between the deterministic periodic oscillations at the frequency 2m~ and the semirandom non- 
periodic oscillations in the region of this frequency (if the phase jumps of the latter by 

are not taken into account). The phase of the first oscillations corresponds to the angle 
of rotation of the vector connecting the coordinate origin and the center of the cloud of 
phase-trajectory points. The phase of the second oscillations is determined by the direction 
along which the cloud is extended. This property is manifest in Fig. 4a through synchronous 
rotation of the first and second phases as downstream shifts occur, which is a situation re- 
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sembling the rotation of the moon about the earth (with the same side always facing the 
earth). Figure 4b (curve i) shows the dependence of the corresponding phase difference be- 
tween the deterministic and stochastic perturbations ~=e--~2s. The same property is manifest 
for oscillations occurring in the region of higher-frequency harmonics, particularly for m3, 

~4, W5, W6" 

Such phase synchronization is an expected consequence of the fact that deterministic 
(coherent with the main wave) and stochastic (noncoherent with ml) initiating oscillations 
are intensified simultaneously and probably independently by the same mechanism of paramet- 
ric resonance under the influence of the same forcing waves (this is the wave w 4 for Fig. 4a 
and b). The linearity of the parametric resonances - in the sense of satisfaction of the 
principle of superposition for the intensified subharmonic perturbations and the absence of 
their inverse effect on the forcing wave - was demonstrated in [9, i0] and observed up to 
very large subharmonic amplitudes, i.e., up to amplitudes 2.4 times greater than the ampli- 
tudes of the forcing wave! The graphs in Fig. 4b actually show the satisfaction of synchro- 
nism conditions for both types of pulsations reinforced in the region of the frequency 2ml 
with oscillations at the frequency of the forcing wave 4w I. The phase differences ~4d--~2e 
(curve 2) and ~4d--~2s (curve 3) in this region remain nearly constant (d and s in the sub- 
scripts denote the deterministic and stochastic components of the oscillations, while the 
figures denote the corresponding numbers of the harmonics). 

It should be noted that the intensification of noncoherent (with the main wave) pulsa- 
tions in the region of the frequency m2, shown in Fig. 4a, occurs at earlier stages of de- 
velopment than for stochastic perturbations in the frequency region mi/2, ~7/2, shown in 
Figs. 2 and 3. The same occurs for the noncoherent pulsations around the frequencies m3, 
m4 (Fig. 4c) and ml, ms, ~7 (Fig. 5a). However, a new type of intensification of these os- 
cillations is seen downstream, the peak here - as for all the other cases - being seen in 
the region x ~ 470-520 mm. Figure 4d shows the moments of intensification, with manifesta- 
tion of the characteristic signs of parametric resonance, for disturbances near the harmonics 
m2 and m4. The same is shown in Fig. 5b for ml, w3, ~+. 
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We examined the reasons for the earlier manifestation of the resonance amplification 
of certain noncoherent perturbations in the region of the frequencies ml, m2, ~3, w~, etc. 
It turned out that the perturbations amplified in the region x = 400-450 mm, although nonco- 
herent with ml, are fairly regular in character and are connected with the slight deviation 
of the output signal of the generator (fed to the vibrating ribbon) from strict sinusoidal 
shape. The signal contains distortions caused by network induction and manifest in slight 
modulation of its amplitude over time with the frequency Af = 2f i - fl (fi ~ 50 Hz is the 
frequency of the network induction). Such modulation corresponds to the presence of very 
small oscillations at the frequencies fl • Af in the spectrum. However, these oscillations 
were greater in amplitude than the background perturbations, which were different in nature. 
Thus, it is these oscillations that act as initiating oscillations in the frequency region 
nw I (n = i, 2, 3...) at the first stage of resonance intensification of noncoherent perturba- 
tions. The weaker stochastic background perturbations have to move to a greater distance 
downstream in order for the resonances to strengthen them to detectable amplitudes and make 
them distinguishable from the background of perturbations of another type. This second stage 
of amplification took place for all of the investigated subharmonic (in the broad sense) dis- 
turbances at approximately x = 470-520 mm. Here, the property of linearity of the parametric 
resonances was manifest to a greater extent than in the case of the amplified disturbances 
discussed above and observed in [9, i0]. 

It should be noted that the process of the resonance intensification of disturbances 
in the flow cannot of course continue indefinitely. It is quite evident from Figs. 2, 3a, 
and 4a that the stage of intensive amplification is replaced by a slow stage and cessation 
of amplitude growth, with simultaneous loss of phase synchronism and gradual disappearance 
of the extension of the cloud of phase-trajectory points along the direction of the resonance 
phase. In the same way, the resonances complete most of their work on the deterministic ini- 
tiating oscillations coherent with the main wave, in accordance with the formation of the 
bumps on the oscillograms, by the point x ~ 460 mm (see [i, 2, 15-17, 19]). 

Thus, an analysis of the intensification of perturbations of the continuous spectrum 
that are noncoherent with the main wave has shown that, as in the N-regime, the main reason 
for the beginning of randomization of flow in the K-regime of boundary-layer transition is 
the parametric resonance amplification of random background initiating perturbations of the 
boundary layer near the frequencies of the subharmonics of the corresponding deterministic 
forcing waves. In contrast to the N-regime, in the K-regime there is the simultaneous reali- 
zation of a whole system of parametric subharmonic resonances based on different determinis- 
tic forcing waves with the frequencies nml intensified at earlier (in the case of the K-re- 
gime) stages of the transition - at the stage of formation of the periodic bumps on the os- 
cillogram. Since subharmonic resonances which are of the same type but which intensify de- 
terministic initiating oscillations play the main role in the generation of periodic second- 
ary flows with bumps [i, 2, 15-17], it can be concluded that the same event that engenders 
this flow is also the cause of its breakdown. The competition between resonance breakdown 
of the flow (with the intensification of stochastic initiating background oscillations) and 
the resonance generation of the bumps (during the intensification of initiating oscillations 
that are coherent with the main wave) also determines whether the K-regime or the N-regime 
will prevail, as well as all possible intermediate types of breakdown of a laminar boundary 
layer. Although the mechanism of flow randomization in the K-regime requires more detailed 
study, at the current stage of investigation it can be definitively concluded that the hy- 
pothesis advanced in [24] regarding the main causes of randomization in the K-regime of 
boundary-layer transition has been substantiated. 
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